Orange peel magnetic activated carbon for removal of acid orange 7 dye from water

Author:

Khalil Asmaa,Mangwandi Chirangano,Salem Mohamed A.,Ragab Safaa,El Nemr Ahmed

Abstract

AbstractMagnetic activated carbon resources with a remarkably high specific surface area have been successfully synthesized using orange peels as the precursor and ZnCl2 as the activating agent. The impregnation ratio was set at 0.5, while the pyrolysis temperature spanned from 700 to 900 °C. This comprehensive study delved into the influence of activation temperatures on the resultant pore morphology and specific surface area. Optimal conditions were discerned, leading to a magnetic activated carbon material exhibiting an impressive specific surface area at 700 °C. The Brunauer–Emmett–Teller surface area reached 155.09 m2/g, accompanied by a total pore volume of 0.1768 cm3/g, and a mean pore diameter of 4.5604 nm. The material displayed noteworthy properties, with saturation magnetization (Ms) reaching 17.28 emu/g, remanence (Mr) at 0.29 emu/g, and coercivity (Hc) of 13.71 G. Additionally, the composite demonstrated super-paramagnetic behaviour at room temperature, facilitating its rapid collection within 5 s through an external magnetic field. Factors such as absorbent dose, initial concentration of the adsorbate, contact time, and pH were systematically examined. The adsorption behaviour for acid orange 7 (AO7) was found to adhere to the Temkin isotherm models (R2 = 0.997). The Langmuir isotherm model suggested a monolayer adsorption, and the calculated maximum monolayer capacity (Qm) was 357.14 mg/g, derived from the linear solvation of the Langmuir model using 0.75 g/L as an adsorbent dose and 150–500 mg/L as AO7 dye concentrations. The pseudo-second order model proved to be the best fit for the experimental data of AO7 dye adsorption, with a high coefficient of determination (R2) ranging from 0.999 to 1.000, outperforming other kinetic models.

Funder

The Science, Technology & Innovation Funding Authority (STDF) of Egypt

National Institute of Oceanography & Fisheries

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3