Cratonic basins as effective sediment barriers in continent-scale sediment routing systems of Paleozoic North America

Author:

Stevens Goddard Andrea L.,Thurston Olivia G.,Malone David H.,McLaughlin Patrick I.,Stewart Jack

Abstract

AbstractProvenance studies demonstrate the important control of plate boundary mountain building on continental sediment routing systems. Less well understood is if subsidence and uplift in cratons also has the potential to affect the organization of sediment routing systems on continental scales. New detrital zircon provenance data from the Michigan Basin in the Midcontinent of North America preserve evidence of intrabasin provenance heterogeneity in Cambrian, Ordovician, and middle Devonian strata. These results suggest that cratonic basins serve as effective sediment barriers that prevent mixing within and across basins from 10 to 100 s of millions of years. Internal sediment mixing, sorting, and dispersal may be achieved by a combination of sedimentary processes and inherited low relief topography. These observations are consistent with provenance data sets from eastern Laurentian Midcontinent basins that show locally and regionally variable provenance signatures during the early Paleozoic. By the late Devonian, provenance signatures throughout the basins homogenized, consistent with the emergence of transcontinental sediment transport systems associated with Appalachian orogenesis at the plate margin. These results demonstrate the importance of cratonic basins on local and regional sediment routing systems suggesting that these features may impede the integration of continental-scale sediment routings systems, particularly during periods of plate margin quiescence.

Funder

American Chemical Society Petroleum Research Fund

Lee J. Suttner Chair, Indiana University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3