Structural dynamics of Populus euphratica forests in different stages in the upper reaches of the Tarim River in China

Author:

Miao NingORCID,Jiao Peipei,Tao Wenjing,Li Maoping,Li Zhijun,Hu Bin,Moermond Timothy C.

Abstract

AbstractWe selected four Populus euphratica Oliv. forest plots (100 m × 100 m) in the upper reaches of the Tarim River in the Xinjiang Uygur Autonomous Region of China. Each of the four forest plots was chosen to represent a different growth and death stage of P. euphratica forest: juvenile forest, mature forest, dying forest, and dead forest. In each plot, we measured the coordinates, DBH, height, and status of all P. euphratica individuals. We used (1) spatial pattern analysis to explore spatial distribution patterns and associations of live trees and dead trees, (2) a random mortality model to test whether the tree death was random or non-random, and (3) a generalized linear mixed-effect model (GLMM) to analyse factors related to tree survival (or death). In the juvenile plot, live trees were significantly aggregated at all scales (p < 0.05); while in the mature and dying plots, live trees were more aggregated at small scales and randomly distributed at larger scales. Live trees and dead trees showed a significantly positive association at all scales in the juvenile plot (p < 0.05). While in the mature and dying plots, live trees and dead trees only showed a significantly positive association at scales of 0–3 m (p < 0.05). There was significant density-dependent mortality in the juvenile plot; while mortality was spatially random at all scales in the mature and dying plots. The distance from the river showed significantly negative correlations with tree survival (p < 0.01). DBH and height had significantly positive associations with tree survival in the juvenile, mature, and dying plots (p < 0.05). In extreme drought, dying trees appeared to be shape-shifting into more shrub-like forms with clumps of root sprouts replacing the high canopies. The shift under extreme drought stress to more shrub-like forms of P. euphratica may extend their time to wait for a favourable change.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3