The influence of conditioned stimuli on [11C]-(+)-PHNO PET binding in tobacco smokers after a one week abstinence

Author:

Di Ciano Patricia,de Wit Harriet,Mansouri Esmaeil,Houle Sylvain,Boileau Isabelle,Le Foll Bernard

Abstract

AbstractStimuli previously paired with drugs of dependence can produce cravings that are associated with increased dopamine (DA) levels in limbic and striatal brain areas. Positron Emission Tomography (PET) imaging with [11C]-(+)-PHNO allows for a sensitive measurement of changes in DA levels. The purpose of the present study was to investigate changes in DA levels, measured with PET imaging with [11C]-(+)-PHNO, in regions of interest in smokers who had maintained abstinence for 7–10 days. Participants (N = 10) underwent two PET scans on separate days, during which they viewed either smoking-related or neutral images, in counterbalanced order. Craving was measured with the 12-item Tobacco Craving Questionnaire (TCQ) and the Questionnaire on Smoking Urges-Brief (QSU-B). Compared to neutral cues, smoking cues did not increase craving. There were no changes in [11C]-(+)-PHNO binding in the cue condition compared to the neutral condition for most regions of interest (ventral pallidum, globus pallidus, limbic striatum, associative striatum, sensorimotor striatum). However, binding potential in the substantia nigra was greater in the smoking-cue condition, indicating decreased synaptic dopamine. There is a potential change of DA level occurring in midbrain following the presentation of smoking-related cues. However, this preliminary finding would need to be validated with a larger sample.

Funder

NIH

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Does stimulant drug–induced sensitization occur in primates?;Journal of Psychiatry and Neuroscience;2022-04-13

2. D3 Receptors and PET Imaging;Therapeutic Applications of Dopamine D3 Receptor Function;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3