Artificial homeostatic temperature regulation via bio-inspired feedback mechanisms

Author:

Feketa Petro,Birkoben Tom,Noll Maximiliane,Schaum Alexander,Meurer Thomas,Kohlstedt Hermann

Abstract

AbstractHomeostasis comprises one of the main features of living organisms that enables their robust functioning by adapting to environmental changes. In particular, thermoregulation, as an instance of homeostatic behavior, allows mammals to maintain stable internal temperature with tightly controlled self-regulation independent of external temperatures. This is made by a proper reaction of the thermoeffectors (like skin blood vessels, brown adipose tissue (BAT), etc.) on a wide range of temperature perturbations that reflect themselves in the thermosensitive neurons’ activity. This activity is being delivered to the respective actuation points and translated into thermoeffectors’ actions, which bring the temperature of the organism to the desired level, called a set-point. However, it is still an open question whether these mechanisms can be implemented in an analog electronic device: both on a system theoretical and a hardware level. In this paper, we transfer this control loop into a real electric circuit by designing an analog electronic device for temperature regulation that works following bio-inspired principles. In particular, we construct a simplified single-effector regulation system and show how spiking trains of thermosensitive artificial neurons can be processed to realize an efficient feedback mechanism for the stabilization of the a priori unknown but system-inherent set-point. We also demonstrate that particular values of the set-point and its stability properties result from the interplay between the feedback control gain and activity patterns of thermosensitive artificial neurons, for which, on the one hand, the neuronal interconnections are generally not necessary. On the other hand, we show that such connections can be beneficial for the set-point regulation and hypothesize that the synaptic plasticity in real thermosensitive neuronal ensembles can play a role of an additional control layer empowering the robustness of thermoregulation. The electronic realization of temperature regulation proposed in this paper might be of interest for neuromorphic circuits which are bioinspired by taking the basal principle of homeostasis on board. In this way, a fundamental building block of life would be transferred to electronics and become a milestone for the future of neuromorphic engineering.

Funder

Deutsche Forschungsgemeinschaft

Christian-Albrechts-Universität zu Kiel

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3