Author:
Raeker Evan,Powers Max,Misra Amit
Abstract
AbstractThe immiscible alloy Cu–Ta has the potential for enhanced mechanical performance in applications as a functional coating. To establish baseline mechanical properties, four Cu–Ta films were co-sputtered at the temperatures 23, 400, 600, and 800 °C and tested with nanoindentation at strain rates 5 $$\times $$
×
10−3 s−1 to 10 s−1. Each film had a unique microstructure morphology. The hardness and elastic modulus of the four films were insensitive to strain rate changes. Instead, the measured properties were spatially dependent, particularly in the 600 and 800 °C films. In those two films, there is a bimodal deformation behavior due to Cu-agglomeration under protruding grains and planar Ta-rich regions. Increasing the indentation depth revealed shear band suppression which is related to a homogenous distribution of flow stresses for all four microstructure morphologies. Finally, the Cu–Ta hardness appeared to follow a rule-of-mixtures when compared to extrapolated data of Cu and Ta monolithic films.
Funder
National Nuclear Security Administration
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献