Predicting medication adherence using ensemble learning and deep learning models with large scale healthcare data

Author:

Gu Yingqi,Zalkikar Akshay,Liu Mingming,Kelly Lara,Hall Amy,Daly Kieran,Ward Tomas

Abstract

AbstractClinical studies from WHO have demonstrated that only 50–70% of patients adhere properly to prescribed drug therapy. Such adherence failure can impact therapeutic efficacy for the patients in question and compromises data quality around the population-level efficacy of the drug for the indications targeted. In this study, we applied various ensemble learning and deep learning models to predict medication adherence among patients. Our contribution to this endeavour involves targeting the problem of adherence prediction for a particularly challenging class of patients who self-administer injectable medication at home. Our prediction pipeline, based on event history, comprises a connected sharps bin which aims to help patients better manage their condition and improve outcomes. In other words, the efficiency of interventions can be significantly improved by prioritizing the patients who are most likely to be non-adherent. The collected data comprising a rich event feature set may be exploited for the purposes of predicting the status of the next adherence state for individual patients. This paper reports on how this concept can be realized through an investigation using a wide range of ensemble learning and deep learning models on a real-world dataset collected from such a system. The dataset investigated comprises 342,174 historic injection disposal records collected over the course of more than 5 years. A comprehensive comparison of different models is given in this paper. Moreover, we demonstrate that the selected best performer, long short-term memory (LSTM), generalizes well by deploying it in a true future testing dataset. The proposed end-to-end pipeline is capable of predicting patient failure in adhering to their therapeutic regimen with 77.35 % accuracy (Specificity: 78.28 %, Sensitivity: 76.42%, Precision: 77.87%,F1 score: 0.7714, ROC AUC: 0.8390).

Funder

Science Foundation Ireland

Enterprise Ireland

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3