Development of a high sensitivity RT-PCR assay for detection of SARS-CoV-2 in individual and pooled nasopharyngeal samples

Author:

Jayakody Harindi,Rowland Daniel,Pereira Clint,Blackwell Rachel,Lasota Tomasz,Laverick Mark,Tisi Laurence,Leese Hannah S.,Walsham Alistair D. S.ORCID

Abstract

AbstractThe COVID-19 pandemic requires sensitive detection of the SARS-CoV-2 virus from samples to ensure accurate detection of infected patients, an essential component of effective national track and trace programs. Due to the scaling challenges of large sample numbers, sample pooling is an attractive solution to reduce both extraction and amplification reagent costs, if high sensitivity can be maintained. We demonstrate that the Erba Molecular ErbaMDx SARS-CoV-2 RT-PCR Kit (EM kit) delivers high sensitivity, achieving analytical detection of 5 copies/reaction SARS-CoV-2 genomic RNA, and 200 copies/mL SARS-CoV-2 inactivated virus spiked into nasopharyngeal swab (NP) samples and extracted through workflow. Furthermore, the EM Kit demonstrates high sensitivity in both pooled (1 in 5) and non-pooled NP samples when compared to an FDA Emergency Use Authorization approved assay, following published FDA guidelines. These findings demonstrate that the EM Kit is suitable for sample pooling, with minimal impact on assay performance. As the COVID-19 pandemic progresses, high sensitivity assays such as the EM Kit will have an important role in ensuring high throughput and sensitive testing using pooled samples can be maintained, delivering the most cost-effective sample extraction and amplification option for national test and trace programs.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference40 articles.

1. who.int. Novel Coronavirus (2020).

2. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) (2022).

3. Transmission of SARS-CoV-2: implications for infection prevention precautions, (2020).

4. Interim Guidelines for Collecting and Handling of Clinical Specimens for COVID-19 Testing (2021).

5. Jayakody, H., Kiddle, G., Perera, S., Tisi, L. & Leese, H. S. Molecular diagnostics in the era of COVID-19. Anal. Methods 13, 3744–3763. https://doi.org/10.1039/D1AY00947H (2021).

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3