Quantifying the chemical activity of cavitation bubbles in a cluster

Author:

Fattahi Kobra,Boffito Daria C.,Robert Etienne

Abstract

AbstractAcoustic cavitation bubbles drive chemical processes through their dynamic lifecycle in liquids. These bubbles are abundant within sonoreactors, where their behavior becomes complex within clusters. This study quantifies their chemical effects within well-defined clusters using a new laser-based method. We focus a laser beam into water, inducing a breakdown that generates a single cavitation bubble. This bubble undergoes multiple collapses, releasing several shockwaves. These shockwaves propagate into the surrounding medium, leading to the formation of secondary bubbles near a reflector, separated from the input laser beam. We evaluate the chemical activity of these bubble clusters of various sizes by KI dosimetry, and to gain insights into their dynamics, we employ high-speed imaging. Hydrophone measurements show that conversion from focused shockwave energy to chemical reactions increases to a maximum of 16.5%. Additional increases in shockwave energy result in denser bubble clusters and a slightly decreased conversion rate, falling to 14.9%, highlighting the key role of bubble dynamics in the transformation of mechanical to chemical energy and as a result in the efficiency of the sonoreactors. The size and frequency of bubble collapses influence the cluster’s chemical reactivity. We introduce a correlation for predicting the conversion rate of cluster energy to chemical energy, based on the cluster’s energy density. The maximum conversion rate occurs at a cluster energy density of 2500 J/L, linked to a cluster with an average bubble diameter of 91 $$\upmu$$ μ m, a bubble density of 3500 bubbles/ml, and a bubble-to-bubble distance ratio of 8.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3