Mode of action, chemistry and defensive efficacy of the osmeterium in the caterpillar Battus polydamas archidamas

Author:

Palma-Onetto Valeria,Bergmann Jan,González-Teuber Marcia

Abstract

AbstractChemical secretions are one of the main defensive mechanisms in insects. The osmeterium is a unique organ in larvae of Papilionidae (Lepidoptera), which is everted upon disturbance, secreting odoriferous volatiles. Here, using larvae of the specialized butterflyBattus polydamas archidamas(Papilionidae: Troidini), we aimed to understand the mode of action of the osmeterium, the chemical composition and origin of the secretion, as well as its defensive efficiency against a natural predator. We described osmeterium’s morphology, ultramorphology, structure, ultrastructure, and chemistry. Additionally, behavioral assays of the osmeterial secretion against a predator were developed. We showed that the osmeterium is composed of tubular arms (made up by epidermal cells) and of two ellipsoid glands, which possess a secretory function. The eversion and retraction of the osmeterium are dependent on the internal pressure generated by the hemolymph, and by longitudinal muscles that connect the abdomen with the apex of the osmeterium. Germacrene A was the main compound present in the secretion. Minor monoterpenes (sabinene and ß-pinene) and sesquiterpenes ((E)-β-caryophyllene, selina-3,7(11)-diene, and other some unidentified compounds) were also detected. Only sesquiterpenes (with the exception of (E)-β-caryophyllene) are likely to be synthesized in the osmeterium-associated glands. Furthermore, the osmeterial secretion proved to deter predatory ants. Our results suggest that the osmeterium, besides serving as an aposematic warning for enemies, is an efficient chemical defense, with its own synthesis of irritant volatiles.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Agencia Nacional de Investigación y Desarrollo

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference65 articles.

1. Edmunds, M. Defence in Animals: A Survey of Antipredator Defences (Longman, 1974).

2. Eisner, T., Eisner, M. & Siegler, M. Secret Weapons: Defenses of Insects, Spiders, Scorpions, and Other Many Legged Creatures (The Belknap Press of Harvard University Press, 2005).

3. Blum, M. S. Chemical Defenses of Arthropods (Elsevier, 2012).

4. Šobotník, J., Jirošová, A. & Hanus, R. Chemical warfare in termites. J. Insect Physiol. 56, 1012–1021 (2010).

5. Vegliante, F. & Hasenfuss, I. Morphology and diversity of exocrine glands in lepidopteran larvae. Annu. Rev. Entomol. 57, 187–204 (2012).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3