Mutational analysis of driver genes defines the colorectal adenoma: in situ carcinoma transition

Author:

Jungwirth Jiri,Urbanova Marketa,Boot Arnoud,Hosek Petr,Bendova Petra,Siskova Anna,Svec Jiri,Kment Milan,Tumova Daniela,Summerova Sandra,Benes Zdenek,Buchler Tomas,Kohout Pavel,Hucl Tomas,Matej Radoslav,Vodickova Ludmila,van Wezel Tom,Vodicka Pavel,Vymetalkova Veronika

Abstract

AbstractA large proportion of colorectal carcinomas (CRC) evolve from colorectal adenomas. However, not all individuals with colonic adenomas have a risk of CRC substantially higher than those of the general population. The aim of the study was to determine the differences or similarities of mutation profile among low- and high-grade adenomas and in situ carcinoma with detailed follow up. We have investigated the mutation spectrum of well-known genes involved in CRC (such as APC, BRAF, EGFR, NRAS, KRAS, PIK3CA, POLE, POLD1, SMAD4, PTEN, and TP53) in a large, well-defined series of 96 adenomas and in situ carcinomas using a high-throughput genotyping technique. Besides, the microsatellite instability and APC and MLH1 promoter methylation were studied as well. We observed a high frequency of pathogenic variants in the studied genes. The APC, KRAS and TP53 mutation frequencies were slightly lower in adenoma samples than in in situ carcinoma samples. Further, when we stratified mutation frequency based on the grade, the frequency distribution was as follows: low-grade adenoma—high-grade adenomas—in situ carcinoma: APC gene 42.9–56.0–54.5%; KRAS gene 32.7–32.0–45.5%; TP53 gene 8.2–20.0–18.2%. The occurrence of KRAS mutation was associated with the presence of villous histology and methylation of the APC promoter was significantly associated with the presence of POLE genetic variations. However, no association was noticed with the presence of any singular mutation and occurrence of subsequent adenoma or CRC. Our data supports the multistep model of gradual accumulation of mutations, especially in the driver genes, such as APC, TP53 and KRAS.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3