Generalizing predictions to unseen sequencing profiles via deep generative models

Author:

Oh Min,Zhang Liqing

Abstract

AbstractPredictive models trained on sequencing profiles often fail to achieve expected performance when externally validated on unseen profiles. While many factors such as batch effects, small data sets, and technical errors contribute to the gap between source and unseen data distributions, it is a challenging problem to generalize the predictive models across studies without any prior knowledge of the unseen data distribution. Here, this study proposes DeepBioGen, a sequencing profile augmentation procedure that characterizes visual patterns of sequencing profiles, generates realistic profiles based on a deep generative model capturing the patterns, and generalizes the subsequent classifiers. DeepBioGen outperforms other methods in terms of enhancing the generalizability of the prediction models on unseen data. The generalized classifiers surpass the state-of-the-art method, evaluated on RNA sequencing tumor expression profiles for anti-PD1 therapy response prediction and WGS human gut microbiome profiles for type 2 diabetes diagnosis.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3