Author:
Wang Yanru,Zhang Guoliang,Wang Hui,Liu Lang,Wang Xu,Zheng Shuqin,Huang Jin,Fu Bin,Zhou Lei
Abstract
AbstractThe time-varying temperature distributions on bridge structures may remarkably change structural performance, which may result in differential strain/stress responses on structural members compared with the design conditions. Therefore, it is crucial to have a comprehensive understanding of temperature distributions and its effects on bridges. In this study, taking advantage of structural health monitoring technology, 1-year field monitoring data collected from a long-span suspension bridge were used to investigate the temperature distributions and their effects on the steel box girder. Specifically, the distributions and probability statistics of temperatures on the top and bottom plates were firstly analyzed. Based on which, the transverse and vertical temperature differences on the box girder were further examined, moreover, the representative values of temperature differences for various return periods were calculated by exceedance probability method. At end, a temperature prediction method was proposed to simulated the temperature field distributions during bridge life cycle, to provide substantial temperature data for estimating future operation condition. The results of this study were beneficial to structural evaluation of in-service bridges to ensure their serviceability and integrity in the life cycle.
Funder
he National Natural Science Foundation of China
the Natural Science Foundation of Chongqing
Publisher
Springer Science and Business Media LLC