Abstract
AbstractAvoiding immune rejection after allogeneic induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) transplantation is a concern. However, mesenchymal stem cells (MSCs) can suppress immune rejection. To determine whether MSC co-transplantation can reduce immune rejection after allogeneic iPSC-CM transplantation, the latter cell type, harbouring a luciferase transgene, was subcutaneously transplanted alone or together with syngeneic MSCs into BALB/c mice. Bioluminescence imaging revealed that MSC co-transplantation significantly improved graft survival (day 7: iPSC-CMs alone 34 ± 5%; iPSC-CMs with MSCs, 61 ± 7%; P = 0.008). MSC co-transplantation increased CD4 + CD25 + FOXP3 + regulatory T cell numbers, apoptotic CD8-positive T cells, and IL-10 and TGF-beta expression at the implantation site. Analysis using a regulatory T cell depletion model indicated that enhanced regulatory T cell populations in the iPSC-CM with MSC group partially contributed to the extended iPSC-CM survival. Further, MSCs affected activated lymphocytes directly through cell–cell contact, which reduced the CD8/CD4 ratio, the proportion of Th1-positive cells among CD4-positive cells, and the secretion of several inflammation-related cytokines. Syngeneic MSC co-transplantation might thus control allogeneic iPSC-CM rejection by mediating immune tolerance via regulatory T cells and cell–cell contact with activated lymphocytes; this approach has promise for cardiomyogenesis-based therapy using allogeneic iPSC-CMs for severe heart failure.
Funder
Japan Agency for Medical Research and Development
Publisher
Springer Science and Business Media LLC
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献