A model for classification of invasive fungal rhinosinusitis by computed tomography

Author:

Slonimsky Guy,McGinn Johnathan D.,Goyal Neerav,Crist Henry,Hennessy Max,Gagnon EricORCID,Slonimsky Einat

Abstract

AbstractOur purpose was to classify acute invasive fungal rhinosinusitis (AIFR) caused by Mucor versus Aspergillus species by evaluating computed tomography radiological findings. Two blinded readers retrospectively graded radiological abnormalities of the craniofacial region observed on craniofacial CT examinations obtained during initial evaluation of 38 patients with eventually pathology-proven AIFR (13:25, Mucor:Aspergillus). Binomial logistic regression was used to analyze correlation between variables and type of fungi. Score-based models were implemented for analyzing differences in laterality of findings, including the ‘unilateral presence’ and ‘bilateral mean’ models. Binary logistic regression was used, with Score as the only predictor and Group (Mucor vs Aspergillus) as the only outcome. Specificity, sensitivity, positive predictive value, negative predictive value and accuracy were determined for the evaluated models. Given the low predictive value of any single evaluated anatomical site, a ‘bilateral mean’ score-based model including the nasal cavity, maxillary sinuses, ethmoid air cells, sphenoid sinus and frontal sinuses yielded the highest prediction accuracy, with Mucor induced AIFR correlating with higher prevalence of bilateral findings. The odds ratio for the model while integrating the above anatomical sites was 12.3 (p < 0.001). PPV, NPV, sensitivity, specificity and accuracy were 0.85, 0.82, 0.92, 0.69 and 0.84 respectively. The abnormal radiological findings on craniofacial CT scans of Mucor and Aspergillus induced AIFR could be differentiated based on laterality, with Mucor induced AIFR associated with higher prevalence of bilateral findings.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3