Individualizing deep dynamic models for psychological resilience data

Author:

Köber Göran,Pooseh Shakoor,Engen Haakon,Chmitorz Andrea,Kampa Miriam,Schick Anita,Sebastian Alexandra,Tüscher Oliver,Wessa Michèle,Yuen Kenneth S. L.,Walter Henrik,Kalisch Raffael,Timmer Jens,Binder Harald

Abstract

AbstractDeep learning approaches can uncover complex patterns in data. In particular, variational autoencoders achieve this by a non-linear mapping of data into a low-dimensional latent space. Motivated by an application to psychological resilience in the Mainz Resilience Project, which features intermittent longitudinal measurements of stressors and mental health, we propose an approach for individualized, dynamic modeling in this latent space. Specifically, we utilize ordinary differential equations (ODEs) and develop a novel technique for obtaining person-specific ODE parameters even in settings with a rather small number of individuals and observations, incomplete data, and a differing number of observations per individual. This technique allows us to subsequently investigate individual reactions to stimuli, such as the mental health impact of stressors. A potentially large number of baseline characteristics can then be linked to this individual response by regularized regression, e.g., for identifying resilience factors. Thus, our new method provides a way of connecting different kinds of complex longitudinal and baseline measures via individualized, dynamic models. The promising results obtained in the exemplary resilience application indicate that our proposal for dynamic deep learning might also be more generally useful for other application domains.

Funder

Universitätsklinikum Freiburg

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference47 articles.

1. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115 (2017).

2. Hess, M., Lenz, S., Blätte, T. J., Bullinger, L. & Binder, H. Partitioned learning of deep Boltzmann machines for SNP data. Bioinformatics 33, 3173–3180. https://doi.org/10.1093/bioinformatics/btx408 (2017).

3. Chen, T. Q., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural ordinary differential equations. In NeurIPS (2018).

4. De Brouwer, E., Simm, J., Arany, A. & Moreau, Y. GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series. Adv. Neural Inf. Process. Syst. 32, 7377–7388 (2019).

5. Yıldız, Ç., Heinonen, M. & Lähdesmäki, H. ODE$$^{2}$$VAE: Deep generative second order ODEs with bayesian neural networks. arXiv preprint arXiv:1905.10994 (2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3