Classification models for assessing coronary artery disease instances using clinical and biometric data: an explainable man-in-the-loop approach

Author:

Samaras Agorastos-Dimitrios,Moustakidis Serafeim,Apostolopoulos Ioannis D.,Papandrianos Nikolaos,Papageorgiou Elpiniki

Abstract

AbstractThe main goal driving this work is to develop computer-aided classification models relying on clinical data to identify coronary artery disease (CAD) instances with high accuracy while incorporating the expert’s opinion as input, making it a "man-in-the-loop" approach. CAD is traditionally diagnosed in a definite manner by Invasive Coronary Angiography (ICA). A dataset was created using biometric and clinical data from 571 patients (21 total features, 43% ICA-confirmed CAD instances) along with the expert’s diagnostic yield. Five machine learning classification algorithms were applied to the dataset. For the selection of the best feature set for each algorithm, three different parameter selection algorithms were used. Each ML model’s performance was evaluated using common metrics, and the best resulting feature set for each is presented. A stratified ten-fold validation was used for the performance evaluation. This procedure was run both using the assessments of experts/doctors as input and without them. The significance of this paper lies in its innovative approach of incorporating the expert's opinion as input in the classification process, making it a "man-in-the-loop" approach. This approach not only increases the accuracy of the models but also provides an added layer of explainability and transparency, allowing for greater trust and confidence in the results. Maximum achievable accuracy, sensitivity, and specificity are 83.02%, 90.32%, and 85.49% when using the expert's diagnosis as input, compared to 78.29%, 76.61%, and 86.07% without the expert's diagnosis. The results of this study demonstrate the potential for this approach to improve the diagnosis of CAD and highlight the importance of considering the role of human expertise in the development of computer-aided classification models.

Funder

Hellenic Foundation for Research and Innovation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3