Author:
Callison W. Éamon,Kiyamu Melisa,Villafuerte Francisco C.,Brutsaert Tom D.,Lieberman Daniel E.
Abstract
AbstractDespite aerobic activity requiring up to tenfold increases in air intake, human populations in high-altitude hypoxic environments can sustain high levels of endurance physical activity. While these populations generally have relatively larger chest and lung volumes, how thoracic motions actively increase ventilation is unknown. Here we show that rib movements, in conjunction with chest shape, contribute to ventilation by assessing how adulthood acclimatization, developmental adaptation, and population-level adaptation to high-altitude affect sustained aerobic activity. We measured tidal volume, heart rate, and rib-motion during walking and running in lowland individuals from Boston (~ 35 m) and in Quechua populations born and living at sea-level (~ 150 m) and at high altitude (> 4000 m) in Peru. We found that Quechua participants, regardless of birth or testing altitudes, increase thoracic volume 2.0–2.2 times more than lowland participants (p < 0.05). Further, Quechua individuals from hypoxic environments have deeper chests resulting in 1.3 times greater increases in thoracic ventilation compared to age-matched, sea-level Quechua (p < 0.05). Thus, increased thoracic ventilation derives from a combination of acclimatization, developmental adaptation, and population-level adaptation to aerobic demand in different oxygen environments, demonstrating that ventilatory demand due to environment and activity has helped shape the form and function of the human thorax.
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Bramble, D. M. & Lieberman, D. E. Endurance running and the evolution of Homo. Nature 432, 345–352 (2004).
2. Lieberman, D. E. Human locomotion and heat loss: An evolutionary perspective. Comp. Physiol. 5, 99–117 (2015).
3. Shave, R. E. et al. Selection of endurance capabilities and the trade-off between pressure and volume in the human heart. Proc. Natl. Acad. Sci. 116, 19905–19910 (2019).
4. Callison, W. E., Holowka, N. B. & Lieberman, D. E. Thoracic adaptations for ventilation in humans and other cursorial mammals. J. Exp. Biol. 2, jeb189357 (2019).
5. Bulbulian, R., Wilcox, A. & Darabos, B. Anaerobic contribution to distance running performance of trained cross-country athletes. Med. Sci. Sport Exerc. 18, 107–113 (1986).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献