Differences in interaction lead to the formation of different types of insulin amyloid

Author:

Mori Wakako,Kawakami Ryosuke,Niko Yosuke,Haruta Tomohiro,Imamura Takeshi,Shiraki Kentaro,Zako Tamotsu

Abstract

AbstractInsulin balls, localized insulin amyloids formed at the site of repeated insulin injections in patients with diabetes, cause poor glycemic control and cytotoxicity. Our previous study has shown that insulin forms two types of amyloids; toxic amyloid formed from the intact insulin ((i)-amyloid) and less-toxic amyloid formed in the presence of the reducing reagent TCEP ((r)-amyloid), suggesting insulin amyloid polymorphism. However, the differences in the formation mechanism and cytotoxicity expression are still unclear. Herein, we demonstrate that the liquid droplets, which are stabilized by electrostatic interactions, appear only in the process of toxic (i)-amyloid formation, but not in the less-toxic (r)-amyloid formation process. The effect of various additives such as arginine, 1,6-hexanediol, and salts on amyloid formation was also examined to investigate interactions that are important for amyloid formation. Our results indicate that the maturation processes of these two amyloids were significantly different, whereas the nucleation by hydrophobic interactions was similar. These results also suggest the difference in the formation mechanism of two different insulin amyloids is attributed to the difference in the intermolecular interactions and could be correlated with the cytotoxicity.

Funder

Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Ehime University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3