Machine learning algorithm improved automated droplet classification of ddPCR for detection of BRAF V600E in paraffin-embedded samples

Author:

Colozza-Gama Gabriel A.,Callegari Fabiano,Bešič Nikola,Paniza Ana Carolina de J.,Cerutti Janete M.

Abstract

AbstractSomatic mutations in cancer driver genes can help diagnosis, prognosis and treatment decisions. Formalin-fixed paraffin-embedded (FFPE) specimen is the main source of DNA for somatic mutation detection. To overcome constraints of DNA isolated from FFPE, we compared pyrosequencing and ddPCR analysis for absolute quantification of BRAF V600E mutation in the DNA extracted from FFPE specimens and compared the results to the qualitative detection information obtained by Sanger Sequencing. Sanger sequencing was able to detect BRAF V600E mutation only when it was present in more than 15% total alleles. Although the sensitivity of ddPCR is higher than that observed for Sanger, it was less consistent than pyrosequencing, likely due to droplet classification bias of FFPE-derived DNA. To address the droplet allocation bias in ddPCR analysis, we have compared different algorithms for automated droplet classification and next correlated these findings with those obtained from pyrosequencing. By examining the addition of non-classifiable droplets (rain) in ddPCR, it was possible to obtain better qualitative classification of droplets and better quantitative classification compared to no rain droplets, when considering pyrosequencing results. Notable, only the Machine learning k-NN algorithm was able to automatically classify the samples, surpassing manual classification based on no-template controls, which shows promise in clinical practice.

Funder

The São Paulo State Research Foundation

CAPES

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3