A Novel Biodegradable Tubular Stent Prevents Pancreaticojejunal Anastomotic Stricture

Author:

Bakheet NaderORCID,Park Jung-HoonORCID,Shin Sang HyunORCID,Hong Sarang,Park Yejong,Shim In KyongORCID,Hwang Changmo,Jeon Jae Yong,Lopera Jorge E.,Song Ho-Young,Kim Song CheolORCID

Abstract

AbstractStricture of pancreatic-enteric anastomoses is a major late complication of a pancreaticoduodenectomy for the treatment of a periampullary tumor and can lead to exocrine and endocrine insufficiency such as malnutrition and diabetes mellitus. We investigated the safety and efficacy of a biodegradable tubular stent (BTS) for preventing a pancreaticojejunostomy (PJ) anastomotic stricture in both a rat and porcine model. The BTS was manufactured using a terpolymer comprising poly p-dioxanone, trimethylene carbonate, and glycolide. A cohort of 42 rats was randomized into 7 groups of 6 animals each after BTS placement into the duodenum for the biodegradation assay. A total of 12 pigs were randomized equally into a control and BTS placement group. The effectiveness of the BTS was assessed by comparing radiologic images with histologic results. Surgical procedures and/or BTS placements were technically successful in all animals. The median mass losses of the removed BTS samples from the rat duodenum were 2.1, 6.8, 11.2, 19.4, 26.1, and 56.8% at 1, 2, 3, 4, 6, and 8 weeks, respectively. The BTS had completely degraded at 12 weeks in the rats. In the porcine PJ model, the mean luminal diameter and area of the pancreatic duct in the control group was significantly larger than in the BTS group (all p < 0.05). BTS placement thus appears to be safe and effective procedure for the prevention of PJ anastomotic stricture. These devices have the potential to be used as a temporary stent placement to treat pancreatic-enteric anastomoses, but further investigations are required for optimization in human.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3