Shoreline Erosion Assessment Modelling for Sohar Region: Measurements, Analysis, and Scenario

Author:

Abushandi E.,Abualkishik A.

Abstract

AbstractThe extended coastlines of Oman have been forced to change in the last few decades because of urbanization development or by natural disasters. Recently, Oman has suffered from a couple of tornados and cyclones, e.g. Cyclone Gonu on June 1, 2007, making the changes even much more dynamic. In order to protect the coastal regions infrastructure, an accurate estimation of shoreline erosion is required. This research paper presents an assessment of shoreline erosion magnitudes using field measurements coupled with Multiple Linear Regressions Models (MLR) to predict future changes. Inverse Distance Weighing and Kriging interpolation methods have been applied in order to visualize shoreline variations from gathered data prospective. The field measurements for the shoreline were taken at 19 different points, the space between the points in a range of 500–700 m approximately. The first field measurements were taken on 19th 20th 21st of June, 2016 while the second field measurements were taken on 14th 15th 16th of November 2016. Pearson correlation shows a strong relationship between the first and the second field trips with an average of 0.83. This significant relationship ensures the applicability of MLRs to project future changes on the shorelines. The results of the MLRs showed severe negative volumetric shoreline erosion with an average of 5.2 m/year with some exceptions at the catchment outlets.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference29 articles.

1. Gornitz, V. Sea-level rise: A review of recent, past and near-future trends. Earth Surface Processes and Landforms 7-20 (Ministry of Commerce & Industry, Oman, 1995).

2. Dobbin, J. Coastal erosion in Oman: Draft Regulations for the Prevention of Coastal Erosion in the Sultanate of Oman. (Ministry of Regional Municipalities and Environment, Muscat, Oman., 1992).

3. Al-Hatrushi, S. & Said Al Buloshi, A. Coastal Erosion and its Impact on Society on the Batinah Coast, Sultanate of Oman. Geographische Rundschau International Edition 5, 12–17 (2009).

4. Church, J. A. et al. Sea-Level Rise by 2100. Science 342, 1445, https://doi.org/10.1126/science.342.6165.1445-a (2013).

5. Kaichang, D., Ruijin, M. & Rongxing, L. Geometric Processing of Ikonos Stereo Imagery for Coastal Mapping Applications. Photogrammetric Engineering & Remote Sensing 69, 873–879, https://doi.org/10.14358/PERS.69.8.873 (2003).

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3