Precise prediction of launch speed for athletes in the aerials event of freestyle skiing based on deep transfer learning

Author:

Jiang Daqi,Wang Hong,Chen Jichi,Dong Chuansheng

Abstract

AbstractAutomatically obtaining the launch speed are powerful guarantees for athletes in the aerials event of freestyle skiing to achieve good results. In most of the published studies describing athletes getting high scores, the assisting sliding distance depends entirely on the coach and even the athlete’s own experience, which may not be optimal. The main goal of the present paper is to use an acquisition system and develop an artificial neural network (ANN) model to automatically obtain the corresponding relationship between assisting sliding distance and speed. The influence of snow friction coefficient, wind speed, wind direction, slope, height and weight can be simulated in the Unity3D engine. The influence of temperature, humidity and tilt angle needs to be measured in real world by professional testers which is strenuous. The neural network is first trained by sufficient simulation data to obtain the encoded feature. Then, the information learned in simulation environment is transferred to another network. The second network uses the data taken from twenty professional testers. Compared with the model without transfer learning, the performance of proposed method has significant improvement. The mean squared error for the testing set is 0.692. It is observed that the speed predicted by the designed deep transfer learning (DTL) model is in good agreement with the experimental measurement results. The results indicate that the proposed transfer learning method is an efficient model to be used as a tool for predicting the assisting sliding distance and launch speed for athletes in the aerials event of freestyle skiing.

Funder

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3