Author:
Abbasi Muhammad Ali Babar,Ansari Rafay I.,Machado Gabriel G.,Fusco Vincent F.
Abstract
AbstractAntenna arrays and multi-antenna systems are essential in beyond 5G wireless networks for providing wireless connectivity, especially in the context of Internet-of-Everything. To facilitate this requirement, beamforming technology is emerging as a key enabling solution for adaptive on-demand wireless coverage. Despite digital beamforming being the primary choice for adaptive wireless coverage, a set of applications rely on pure analogue beamforming approaches, e.g., in point-to-multi point and physical-layer secure communication links. In this work, we present a novel scalable analogue beamforming hardware architecture that is capable of adaptive 2.5-dimensional beam steering and beam shaping to fulfil the coverage requirements. Beamformer hardware comprises of a finite size Maxwell fisheye lens used as a scalable feed network solution for a semi-circular array of monopole antennas. This unique hardware architecture enables a flexibility of using 2 to 8 antenna elements. Beamformer development stages are presented while experimental beam steering and beam shaping results show good agreement with the estimated performance.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献