Effects of physical parameters on fish migration between a reservoir and its tributaries

Author:

Pfauserová Nikola,Brabec Marek,Slavík Ondřej,Horký Pavel,Žlábek Vladimír,Hladík Milan

Abstract

AbstractReservoirs interrupt natural riverine continuity, reduce the overall diversity of the environment, and enhance the spread of non-native fish species through suitable environments. Under favourable conditions, invasive species migrate to tributaries to benefit from local resource supplies. However, the changes in physical conditions in reservoirs that motivate fish species to migrate remain poorly understood. We analysed migration between a reservoir and its tributary in three non-native (asp Leuciscus aspius, ide Leuciscus idus, and bream Abramis brama) and two native (chub Squalius cephalus and pike Esox lucius) species equipped with radio tags. This 5-year study revealed that an increasing day length was the most general predictor of migration into the tributary in all observed species except E. lucius. Only L. aspius responded to the substantially increasing water level in the reservoir, while the migration of L. idus and S. cephalus was attenuated. Abramis brama and S. cephalus occurred more frequently in tributaries with an increase in temperature in the reservoir and vice versa, but if the difference in temperature between the reservoir and its tributary was small, then A. brama did not migrate. Our results showed that migration from the reservoir mainly followed the alterations of daylight, while responses to other parameters were species specific. The interindividual heterogeneity within the species was significant and was not caused by differences in length or sex. Our results contribute to the knowledge of how reservoirs can affect the spread of non-native species that adapt to rapid human-induced environmental changes.

Funder

European Regional Development Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3