Simulation of melting paraffin with graphene nanoparticles within a solar thermal energy storage system

Author:

Jafaryar M.,Sheikholeslami M.

Abstract

AbstractIn this paper, applying new structure and loading Graphene nanoparticles have been considered as promising techniques for enhancing thermal storage systems. The layers within the paraffin zone were made from aluminum and the melting temperature of paraffin is 319.55 K. The paraffin zone located in the middle section of the triplex tube and uniform hot temperatures (335 K) for both walls of annulus have been applied. Three geometries for the container were applied with changing the angle of fins (α = 7.5°, 15° and 30°). The uniform concentration of additives was assumed involving a homogeneous model for predicting properties. Results indicate that loading Graphene nanoparticles causes time of melting to decrease about 4.98% when α = 7.5° and the impact of ϕ improves about 5.2% with reduce of angle from 30° to 7.5°. In addition, as angle declines, the period of melting decreases around 76.47% which is associated with augmentation of driving force (conduction) in geometry with lower α.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3