Prediction of axial capacity of corrosion-affected RC columns strengthened with inclusive FRP

Author:

Kumar Prashant,Arora Harish Chandra,Kumar Aman,Radu Dorin

Abstract

AbstractThe primary cause behind the degradation of reinforced concrete (RC) structures is the propagation of corrosion in the steel-RC structures. Nowadays, numerous retrofitting techniques are available in the construction sector. Fiber-reinforced polymer (FRP) is one of the efficient rehabilitation measures that can be implemented on corroded structures to enhance structural capacities. However, the estimation of axial strength of FRP-strengthened columns affected by corrosion has been a challenging and tedious task in the laboratory as well as on the site. Considering such shortcomings, the prediction of axial capacity can be done using various analytical methods and artificial intelligence (AI) techniques. In this study, a comprehensive dataset of circular columns was extracted from the literature to predict the axial strength of FRP-wrapped and unstrengthened RC corroded columns. The laboratory results from the assembled dataset were compared to corresponding values estimated using relevant design codes provided by American Concrete Institute (ACI 440.2R-17 and ACI 318-19), and Bureau of Indian Standard (IS 456:2000). Five machine learning models were employed on columns to predict the axial load carrying capacity of FRP-strengthened and un-strengthened RC corroded columns. The results discovered that the extreme gradient boosting (XGBoost) model achieves superior accuracy with the least errors and could be used by the scientific community and FRP applicators to forecast the axial performance of corroded columns strengthened with and without FRP. The findings from the design codes revealed that prediction errors were available in high margins. Furthermore, feature importance analysis was conducted using the Shapley Additive exPlanation algorithm to know the contribution and influence of each input parameter on axial capacity. The feature analysis found that unconfined compressive strength of concrete plays an important role in deciding the axial capacity of columns. Moreover, to enhance the precision of axial capacity computation and improving the overall efficacy in engineering practice, a web-based user-friendly interface was developed for FRP applicators and engineers to simplify the process.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3