Stabilized quantum-enhanced SIEM architecture and speed-up through Hoeffding tree algorithms enable quantum cybersecurity analytics in botnet detection

Author:

Tehrani Madjid G.ORCID,Sultanow EldarORCID,Buchanan William J.ORCID,Amir MalikORCID,Jeschke AnjaORCID,Houmani MahkameORCID,Chow RaymondORCID,Lemoudden MouadORCID

Abstract

AbstractFor the first time, we enable the execution of hybrid quantum machine learning (HQML) methods on real quantum computers with 100 data samples and real-device-based simulations with 5000 data samples, thereby outperforming the current state of research of Suryotrisongko and Musashi from 2022 who were dealing with 1000 data samples and quantum simulators (pure software-based emulators) only. Additionally, we beat their reported accuracy of 76.8% by an average accuracy of 91.2%, all within a total execution time of 1687 s. We achieve this significant progress through two-step strategy: Firstly, we establish a stable quantum architecture that enables us to execute HQML algorithms on real quantum devices. Secondly, we introduce new hybrid quantum binary classifiers (HQBCs) based on Hoeffding decision tree algorithms. These algorithms speed up the process via batch-wise execution, reducing the number of shots required on real quantum devices compared to conventional loop-based optimizers. Their incremental nature serves the purpose of online large-scale data streaming for domain generation algorithm (DGA) botnet detection, and allows us to apply HQML to the field of cybersecurity analytics. We conduct our experiments using the Qiskit library with the Aer quantum simulator, and on three different real quantum devices from Azure Quantum: IonQ, Rigetti, and Quantinuum. This is the first time these tools are combined in this manner.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3