Remote sensing based forest cover classification using machine learning

Author:

Aziz Gouhar,Minallah Nasru,Saeed Aamir,Frnda Jaroslav,Khan Waleed

Abstract

AbstractPakistan falls significantly below the recommended forest coverage level of 20 to 30 percent of total area, with less than 6 percent of its land under forest cover. This deficiency is primarily attributed to illicit deforestation for wood and charcoal, coupled with a failure to embrace advanced techniques for forest estimation, monitoring, and supervision. Remote sensing techniques leveraging Sentinel-2 satellite images were employed. Both single-layer stacked images and temporal layer stacked images from various dates were utilized for forest classification. The application of an artificial neural network (ANN) supervised classification algorithm yielded notable results. Using a single-layer stacked image from Sentinel-2, an impressive 91.37% training overall accuracy and 0.865 kappa coefficient were achieved, along with 93.77% testing overall accuracy and a 0.902 kappa coefficient. Furthermore, the temporal layer stacked image approach demonstrated even better results. This method yielded 98.07% overall training accuracy, 97.75% overall testing accuracy, and kappa coefficients of 0.970 and 0.965, respectively. The random forest (RF) algorithm, when applied, achieved 99.12% overall training accuracy, 92.90% testing accuracy, and kappa coefficients of 0.986 and 0.882. Notably, with the temporal layer stacked image of the Sentinel-2 satellite, the RF algorithm reached exceptional performance with 99.79% training accuracy, 96.98% validation accuracy, and kappa coefficients of 0.996 and 0.954. In terms of forest cover estimation, the ANN algorithm identified 31.07% total forest coverage in the District Abbottabad region. In comparison, the RF algorithm recorded a slightly higher 31.17% of the total forested area. This research highlights the potential of advanced remote sensing techniques and machine learning algorithms in improving forest cover assessment and monitoring strategies.

Funder

Research Excellence for Region Sustainability and High-tech Industries

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3