Sustainable mining of natural vein graphite via acid-extraction from waste attached to rock pieces of vein banks

Author:

Medagedara Asiri D. T.,Dahanayake Poornima,Pitawala Herath Mudiyanselage T. G. A.,Karunarathne Buddika,De Silva K. Kanishka H.,Yoshimura Masamichi,Walikannage Kosala P.,Bandara Thennakoon Mudiyanselage W. J.,Rajapakse Rajapakse Mudiyanselage G.,Kumara Gamaralalage R. A.

Abstract

AbstractA procedure based on acid extraction using a mixture of conc. sulfuric and nitric acids (8:1) to recover graphite attached to rock pieces of the vein contact zones of graphite mines, is developed as a sustainable mining practice. When the extracted graphite is heated at 600 °C for 15 min, it is converted to a highly expanded form resembling worm-like structures. The unique properties of this graphite and expanded graphite are presented by characterizing using FT-IR, Raman, SEM–EDX and XRD. This expanded graphite has the oil absorption capacity of 120 g of oil per 1 g of expanded graphite, making it the material so far known to have the highest oil absorption capacity. For comparison purpose, properties of ball-milled graphite powder which was obtained from the middle of the vein is prepared and characterized. However, the ball-milled graphite does not expand upon heat-treatment at 600 °C for 15 min. The acid-extracted graphite (AEG) has lower purity than that of ball-milled graphite (BMG), but heat-treatment increases the purity of the AEG while BMG shows opposite results. The purity of AEG has increased considerably upon heat-treatment by lowering the O wt% (weight percentage) by 6.07% to half of its original value while increasing C wt% by 8.05%. On the contrary, the C wt% of BMG has decreased by 3.71% and O wt% increased by 3.84%. The increase of purity upon heat treatment of AEG is due to the removal of some carbon and sulfur impurities as their volatile oxides. The ball-milled graphite absorbs carbon dioxide from the atmosphere when heat-treated at 600 °C. As such, the ball-milled graphite powder can be used to extract carbon dioxide from the atmosphere. The crystallite size of AEG is 1.25 times larger than that of BMG and it has been increased by 8 and 2.9 times, respectively, upon heat-treatment at 600 °C for 15 min. This is a clear evidence to expanded nature of AEG compared to BMG.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3