Normal mode analysis in multi-coupled non-Hermitian optical nanocavities

Author:

Park Kyong-Tae,Kim Kyoung-Ho,Min Byung-Ju,No You-Shin

Abstract

AbstractCoupled optical cavities are an attractive on-chip optical platform for realizing quantum mechanical concepts in electrodynamics and further developing non-Hermitian photonics. In such systems, an intercavity interaction is often considered as a key parameter to understand the system’s behaviors but its estimation/calculation is typically limited for some simplified systems owing to extended complexities. For example, multi-coupled photonic crystal (PhC) nanocavities exhibiting strong resonances with a large free spectral range can serve as an excellent test-bed to study non-Hermitian optical properties when spatially non-uniform gain is introduced. However, the detailed quantitative analysis such as spectral tracing of cavity normal modes is often limited in commercially available numerical tools because of the required massive computation resources. Herein, we report on a concept of spatial overlap integrals (SOIs) between the eigenmodes in non-coupled PhC nanocavities and utilize them to obtain the intercavity interactions in passively coupled PhC nanocavity systems. With the help of coupling strength factors calculated from SOIs, we were able to fully exploit the coupled mode theory (CMT) and readily trace the detailed spectral behaviors of normal modes in various multi-coupled PhC nanocavities. Full-wave numerical simulation results verified the proposed method, revealing that the characteristics of original eigenmodes from non-coupled PhC nanocavities can act as key building blocks for analyzing the normal modes of multi-coupled PhC nanocavities. We further applied this SOI method to various multi-coupled PhC nanocavities with non-symmetric optical gain/loss distributions and successfully observed the unusual spectral evolution of normal modes and the correspondingly occurring unique non-Hermitian behaviors.

Funder

Konkuk University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3