Modelling lifespan reduction in an exogenous damage model of generic disease

Author:

Tobin Rebecca,Pridham Glen,Rutenberg Andrew D.

Abstract

AbstractWe model the effects of disease and other exogenous damage during human aging. Even when the exogenous damage is repaired at the end of acute disease, propagated secondary damage remains. We consider both short-term mortality effects due to (acute) exogenous damage and long-term mortality effects due to propagated damage within the context of a generic network model (GNM) of individual aging that simulates a U.S. population. Across a wide range of disease durations and severities we find that while excess short-term mortality is highest for the oldest individuals, the long-term years of life lost are highest for the youngest individuals. These appear to be universal effects of human disease. We support this conclusion with a phenomenological model coupling damage and mortality. Our results are consistent with previous lifetime mortality studies of atom bomb survivors and post-recovery health studies of COVID-19. We suggest that short-term health impact studies could complement lifetime mortality studies to better characterize the lifetime impacts of disease on both individuals and populations.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3