Rearrangement and evolution of mitochondrial genomes in Thysanoptera (Insecta)

Author:

Tyagi KaomudORCID,Chakraborty Rajasree,Cameron Stephen L.ORCID,Sweet Andrew D.,Chandra Kailash,Kumar Vikas

Abstract

AbstractPrior to this study, complete mitochondrial genomes from Order Thysanoptera were restricted to a single family, the Thripidae, resulting in a biased view of their evolution. Here we present the sequences for the mitochondrial genomes of four additional thrips species, adding three extra families and an additional subfamily, thus greatly improving taxonomic coverage. Thrips mitochondrial genomes are marked by high rates of gene rearrangement, duplications of the control region and tRNA mutations. Derived features of mitochondrial tRNAs in thrips include gene duplications, anticodon mutations, loss of secondary structures and high gene translocation rates. Duplicated control regions are found in the Aeolothripidae and the ‘core’ Thripinae clade but do not appear to promote gene rearrangement as previously proposed. Phylogenetic analysis of thrips mitochondrial sequence data supports the monophyly of two suborders, a sister-group relationship between Stenurothripidae and Thripidae, and suggests a novel set of relationships between thripid genera. Ancestral state reconstructions indicate that genome rearrangements are common, with just eight gene blocks conserved between any thrips species and the ancestral insect mitochondrial genome. Conversely, 71 derived rearrangements are shared between at least two species, and 24 of these are unambiguous synapomorphies for clades identified by phylogenetic analysis. While the reconstructed sequence of genome rearrangements among the protein-coding and ribosomal RNA genes could be inferred across the phylogeny, direct inference of phylogeny from rearrangement data in MLGO resulted in a highly discordant set of relationships inconsistent with both sequence-based phylogenies and previous morphological analysis. Given the demonstrated rates of genomic evolution within thrips, extensive sampling is needed to fully understand these phenomena across the order.

Funder

DST | Science and Engineering Research Board

Ministry of Environment, Forest and Climate Change

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3