Formation of a photocatalytic WO3 surface layer on electrodeposited Al–W alloy coatings by selective dissolution and heat treatment

Author:

Higashino Shota,Miyake Masao,Ikenoue Takumi,Hirato Tetsuji

Abstract

Abstract In this study, we explored the feasibility of WO3 surface layer formation on electrodeposited Al–W alloy coatings by selective dissolution and heat treatment, with the aim of providing corrosion-resistant Al–W alloy coatings with photocatalytic self-cleaning properties under visible light illumination. The selective dissolution of Al and oxidation of residual W was carried out by immersing Al–W alloy films in an aqueous solution of nitric acid. A nanostructured H2WO4·H2O surface layer was formed on the alloy film by this process. The H2WO4·H2O layer was dehydrated to WO3 by heat treatment, yielding a multilayered WO3/Al–W alloy film with an approximately 300 nm thick WO3 layer. The WO3/Al–W alloy film exhibited photocatalytic self-cleaning, as demonstrated by the photodegradation of stearic acid and methylene blue. We also confirmed that selective dissolution and heat treatment did not significantly diminish the corrosion resistance of the Al–W alloy films.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3