Abstract
AbstractMulti-view spectral clustering is one of the multi-view clustering methods widely studied by numerous scholars. The first step of multi-view spectral clustering is to construct the similarity matrix of each view. Consequently, the clustering performance will be greatly affected by the quality of the similarity matrix of each view. To solve this problem well, an improved multi-view spectral clustering based on tissue-like P systems is proposed in this paper. The optimal per-view similarity matrix is generated in an iterative manner. In addition, spectral clustering is combined with the symmetric nonnegative matrix factorization method to directly output the clustering results to avoid the secondary operation, such as k-means or spectral rotation. Furthermore, improved multi-view spectral clustering is integrated with the tissue-like P system to enhance the computational efficiency of the multi-view clustering algorithm. Extensive experiments verify the effectiveness of this algorithm over other state-of-the-art algorithms.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献