FCC to BCC transformation-induced plasticity based on thermodynamic phase stability in novel V10Cr10Fe45CoxNi35−x medium-entropy alloys
Author:
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Link
http://www.nature.com/articles/s41598-019-39570-y.pdf
Reference59 articles.
1. Li, Z., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227–230 (2016).
2. Wei, Y. et al. Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat. Commun. 5, 3580 (2014).
3. Lu, K., Lu, L. & Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349–352 (2009).
4. Zhao, Y. H., Liao, X.-Z., Cheng, S., Ma, E. & Zhu, Y. T. Simultaneously increasing the ductility and strength of nanostructured alloys. Adv. Mater. 18, 2280–2283 (2006).
5. Petch, N. J. The ductile-brittle transition in the fracture of α-iron: I. Phil. Mag. 3, 1089–1097 (1958).
Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Atomic-scale investigation of the mechanisms of deformation-induced martensitic transformation at ultra-cryogenic temperatures;Journal of Materials Science & Technology;2025-03
2. Recent progress in high-entropy alloys for laser powder bed fusion: Design, processing, microstructure, and performance;Materials Science and Engineering: R: Reports;2024-12
3. Effects of deformation-induced BCC martensitic transformation on uniaxial ductility and biaxial stretchability in metastable ferrous medium-entropy alloys;Materials Science and Engineering: A;2024-10
4. Low cycle fatigue properties of CoCrFeNiMn high-entropy alloy with heterogeneous microstructure;Materials Science and Engineering: A;2024-10
5. Temperature-jump tensile tests to induce optimized TRIP/TWIP effect in a metastable austenitic stainless steel;International Journal of Minerals, Metallurgy and Materials;2024-08-28
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3