Machine learning and metabolic modelling assisted implementation of a novel process analytical technology in cell and gene therapy manufacturing

Author:

Williams Thomas,Kalinka Kevin,Sanches Rui,Blanchard-Emmerson Greg,Watts Samuel,Davies Lee,Knevelman Carol,McCloskey Laura,Jones Peter,Mitrophanous Kyriacos,Miskin James,Dikicioglu Duygu

Abstract

AbstractProcess analytical technology (PAT) has demonstrated huge potential to enable the development of improved biopharmaceutical manufacturing processes by ensuring the reliable provision of quality products. However, the complexities associated with the manufacture of advanced therapy medicinal products have resulted in a slow adoption of PAT tools into industrial bioprocessing operations, particularly in the manufacture of cell and gene therapy products. Here we describe the applicability of a novel refractometry-based PAT system (Ranger system), which was used to monitor the metabolic activity of HEK293T cell cultures during lentiviral vector (LVV) production processes in real time. The PAT system was able to rapidly identify a relationship between bioreactor pH and culture metabolic activity and this was used to devise a pH operating strategy that resulted in a 1.8-fold increase in metabolic activity compared to an unoptimised bioprocess in a minimal number of bioreactor experiments; this was achieved using both pre-programmed and autonomous pH control strategies. The increased metabolic activity of the cultures, achieved via the implementation of the PAT technology, was not associated with increased LVV production. We employed a metabolic modelling strategy to elucidate the relationship between these bioprocess level events and HEK293T cell metabolism. The modelling showed that culturing of HEK293T cells in a low pH (pH 6.40) environment directly impacted the intracellular maintenance of pH and the intracellular availability of oxygen. We provide evidence that the elevated metabolic activity was a response to cope with the stress associated with low pH to maintain the favourable intracellular conditions, rather than being indicative of a superior active state of the HEK293T cell culture resulting in enhanced LVV production. Forecasting strategies were used to construct data models which identified that the novel PAT system not only had a direct relationship with process pH but also with oxygen availability; the interaction and interdependencies between these two parameters had a direct effect on the responses observed at the bioprocess level. We present data which indicate that process control and intervention using this novel refractometry-based PAT system has the potential to facilitate the fine tuning and rapid optimisation of the production environment and enable adaptive process control for enhanced process performance and robustness.

Funder

Engineering and Physical Sciences Research Council

Innovate UK

Swiss-European Mobility Programme

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3