Observation of a Correlation Between Internal friction and Urbach Energy in Amorphous Oxides Thin Films

Author:

Amato Alex,Terreni Silvana,Granata Massimo,Michel Christophe,Sassolas Benoit,Pinard Laurent,Canepa Maurizio,Cagnoli Gianpietro

Abstract

AbstractWe have investigated by spectroscopic ellipsometry (SE, 190–1700 nm) the optical properties of uniform, amorphous thin films of Ta2O5 and Nb2O5 as deposited and after annealing, and after so-called “doping” with Ti atoms which leads to mixed oxides. Ta2O5 and Ti:Ta2O5 are currently used as high-index components in Bragg reflectors for Gravitational Wave Detectors. Parallel to the optical investigation, we measured the mechanical energy dissipation of the same coatings, through the so-called “loss angle” ϕ = Q−1, which quantifies the energy loss in materials. By applying the well-known Cody-Lorentz model in the analysis of SE data we have been able to derive accurate information on the fundamental absorption edge through important parameters related to the electronic density of states, such as the optical gap (Eg) and the energy width of the exponential Urbach tail (the Urbach energy EU). We have found that EU is neatly reduced by suitable annealing as is also perceptible from direct inspection of SE data. Ti-doping also points to a minor decrease of EU. The reduction of EU parallels a lowering of the mechanical losses quantified by the loss angle ϕ. The correlation highlights that both the electronic states responsible of Urbach tail and the internal friction are sensitive to a self-correlation of defects on a medium-range scale, which is promoted by annealing and in our case, to a lesser extent, by doping. These observations may contribute to a better understanding of the relationship between structural and mechanical properties in amorphous oxides.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3