Predicting scalar coupling constants by graph angle-attention neural network

Author:

Fang Jia,Hu Linyuan,Dong Jianfeng,Li Haowei,Wang Hui,Zhao Huafen,Zhang Yao,Liu Min

Abstract

AbstractScalar coupling constant (SCC), directly measured by nuclear magnetic resonance (NMR) spectroscopy, is a key parameter for molecular structure analysis, and widely used to predict unknown molecular structure. Restricted by the high cost of NMR experiments, it is impossible to measure the SCC of unknown molecules on a large scale. Using density functional theory (DFT) to theoretically calculate the SCC of molecules is incredibly challenging, due to the cost of substantial computational time and space. Graph neural networks (GNN) of artificial intelligence (AI) have great potential in constructing molecul ar-like topology models, which endows them the ability to rapidly predict SCC through data-driven machine learning methods, and avoiding time-consuming quantum chemical calculations. With a priori knowledge of angles, we propose a graph angle-attention neural network (GAANN) model to predict SCC by means of some easily accessible related information. GAANN, with a multilayer message-passing network and a self-attention mechanism, can accurately simulate the molecular-like topological structure and predict molecular properties. Our simulations show that the prediction accuracy by GAANN, with the log(MAE) = −2.52, is close to that by DFT calculations. Different from conventional AI methods, GAANN combining the AI method with quantum chemistry theory (Karplus equation) has a strong physicochemical interpretability about angles. From an AI perspective, we find that bond angle has the highest correlation with the SCC among all angle features (dihedral angle, bond angle, geometric angles) about multiple coupling types in the small molecule datasets.

Funder

Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3