Automatic inference of ICD-10 codes from German ophthalmologic physicians’ letters using natural language processing

Author:

Böhringer D.,Angelova P.,Fuhrmann L.,Zimmermann J.,Schargus M.,Eter N.,Reinhard T.

Abstract

AbstractPhysicians’ letters are the optimal source of diagnoses for registries. However, most registries demand for diagnosis codes such as ICD-10. We herein describe an algorithm that infers ICD-10 codes from German ophthalmologic physicians’ letters. We assess the method in three German eye hospitals. Our algorithm is based on the nearest-neighbor method as well as on a large thesaurus for ICD-10 codes. This thesaurus was embedded into a Word2Vec space created from anonymized physicians’ reports of the first hospital. For evaluation, each of the three hospitals sent all diagnoses taken from 100 letters. The inferred ICD-10 codes were evaluated for correctness by the senders. A total of 3332 natural language terms had been sent in (812 hospital one, 1473 hospital two, 1047 hospital three). A total of 526 non-diagnoses were excluded upfront. 2806 ICD-10 codes were inferred (771 hospital one, 1226 hospital two, 809 hospital three). In the first hospital, 98% were fully correct and 99% correct at the level of the superordinate disease concept. The percentages in hospital two were 69% and 86%. The respective numbers for hospital three were 69% and 91%. Our simple method is capable of inferring ICD-10 codes for German natural language diagnoses, especially when the embedding space has been built with physicians’ letters from the same hospital. The method may yield sufficient accuracy for many tasks in the multi-centric setting and can easily be adapted to other languages/specialities.

Funder

Universitätsklinikum Freiburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3