Midfrontal theta oscillation encodes haptic delay

Author:

Alsuradi Haneen,Park Wanjoo,Eid Mohamad

Abstract

AbstractHaptic technologies aim to simulate tactile or kinesthetic interactions with a physical or virtual environment in order to enhance user experience and/or performance. However, due to stringent communication and computational needs, the user experience is influenced by delayed haptic feedback. While delayed feedback is well understood in the visual and auditory modalities, little research has systematically examined the neural correlates associated with delayed haptic feedback. In this paper, we used electroencephalography (EEG) to study sensory and cognitive neural correlates caused by haptic delay during passive and active tasks performed using a haptic device and a computer screen. Results revealed that theta power oscillation was significantly higher at the midfrontal cortex under the presence of haptic delay. Sensory correlates represented by beta rebound were found to be similar in the passive task and different in the active task under the delayed and synchronous conditions. Additionally, the event related potential (ERP) P200 component is modulated under the haptic delay condition during the passive task. The P200 amplitude significantly reduced in the last 20% of trials during the passive task and in the absence of haptic delay. Results suggest that haptic delay could be associated with increased cognitive control processes including multi-sensory divided attention followed by conflict detection and resolution with an earlier detection during the active task. Additionally, haptic delay tends to generate greater perceptual attention that does not significantly decay across trials during the passive task.

Funder

New York University Abu Dhabi

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3