Advancing aircraft engine RUL predictions: an interpretable integrated approach of feature engineering and aggregated feature importance

Author:

Alomari Yazan,Andó Mátyás,Baptista Marcia L.

Abstract

AbstractIn this study, we present a comprehensive approach for predicting the remaining useful life (RUL) of aircraft engines, incorporating advanced feature engineering, dimensionality reduction, feature selection techniques, and machine learning models. The process begins with a rolling time series window, followed by the extraction of a multitude of statistical features, and the application of principal component analysis for dimensionality reduction. We utilize a variety of feature selection methods, such as Genetic Algorithm, Recursive Feature Elimination, Least Absolute Shrinkage and Selection Operator Regression, and Feature Importances from a Random Forest model. As a significant contribution, we introduce the novel aggregated feature importances with cross-validation (AFICv) technique, which ranks features based on their mean importance. We establish a selection criterion that retains features with a cumulative mean sum equal to 70%, thereby reducing the complexity of machine learning models and enhancing their generalizability. Four machine learning regression models—Natural and Extreme Gradient Boosting, Random Forest, and Multi-Layer Perceptron—were employed to evaluate the effectiveness of the selected features. The performance of our proposed method is assessed by the evaluation metrics Root Mean Square Error (RMSE) and R2 Score, and also considered within-interval percentages and relative accuracy metrics. Importantly, a novel PCA interpretability was introduced to provide real-world context and enhance the utility of our findings for domain experts. Our results indicate that the proposed AFICv technique efficiently achieves competitive performance across the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) sub-datasets using a significantly smaller subset of features, thus contributing to a more effective and interpretable RUL prediction methodology for aircraft engines.

Funder

Eötvös Loránd University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3