Effects of biochar and crop straws on the bioavailability of cadmium in contaminated soil

Author:

Chen Xuan,He Hong-Zhi,Chen Gui-Kui,Li Hua-Shou

Abstract

AbstractNumerous studies have been investigated the potential of biochar (BC) derived from various materials and crop straw (CS) to decrease the bioavailability of heavy metals in soil contaminated with cadmium (Cd), and thereby reduce their potential risk to human health and the ecological environment. However, little attention has been given to the comparison of heavy metal remediation efficiency using BC and CS such as peanut vine (PV) and rice straw (RS), especially in soil contaminated with Cd. Here, we explore if Cd bioavailability is affected in contaminated soil by BC and CS. Peanuts were grown in plastic pots, which contained BC or CS at 5% (dry weight, w/w) in controlled environment mesocosms. The bioavailability of Cd in contaminated soil was measured by Cd concentration in the plant and the concentrations of various forms of Cd in the soil. At the same plant age, growth with BC (compared with PV and RS) led to 13.56% and 8.28% lower rates of Cd content in the aboveground parts, 40.65% and 35.67% lower rates of Cd content in the seeds, yet 9.08% and 7.09% lower rates of Cd content in the roots, yet 35.80% and 28.48% lower rates of exchangeable Cd content in the soil. Moreover, BC amendment enhanced the biomass of peanut and physiological quality. Thus, BC had a greater impact on immobilizing Cd in the soil. The results imply that BC was more significantly (P < 0.05) remarkable in decreasing the Cd bioavailability and improving the biomass of peanut. BC has greater potential for enhancing soil quality and promoting peanut growth. In conclusion, this research demonstrates an understanding of employing BC as a promising inexpensive and eco-friendly amendment to remediate soil contaminated with Cd.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3