Abstract
AbstractMany mammals rely on volatile organic chemical compounds (VOCs) produced by bacteria for their communication and behavior, though little is known about the exact molecular mechanisms or bacterial species that are responsible. We used metagenomic sequencing, mass-spectrometry based metabolomics, and culturing to profile the microbial and volatile chemical constituents of anal gland secretions in twenty-three domestic cats (Felis catus), in attempts to identify organisms potentially involved in host odor production. We found that the anal gland microbiome was dominated by bacteria in the genera Corynebacterium, Bacteroides, Proteus, Lactobacillus, and Streptococcus, and showed striking variation among individual cats. Microbiome profiles also varied with host age and obesity. Metabolites such as fatty-acids, ketones, aldehydes and alcohols were detected in glandular secretions. Overall, microbiome and metabolome profiles were modestly correlated (r = 0.17), indicating that a relationship exists between the bacteria in the gland and the metabolites produced in the gland. Functional analyses revealed the presence of genes predicted to code for enzymes involved in VOC metabolism such as dehydrogenases, reductases, and decarboxylases. From metagenomic data, we generated 85 high-quality metagenome assembled genomes (MAGs). Of importance were four MAGs classified as Corynebacterium frankenforstense, Proteus mirabilis, Lactobacillus johnsonii, and Bacteroides fragilis. They represent strong candidates for further investigation of the mechanisms of volatile synthesis and scent production in the mammalian anal gland.
Funder
Chancellor’s Postdoctoral Fellowship University of California, Davis
National Institutes of Health
Department of Veteran's Affairs
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献