Physiological and biochemical responses of soft coral Sarcophyton trocheliophorum to doxycycline hydrochloride exposure

Author:

Xu Wenxin,Ahmed Waqas,Mahmood Mohsin,Li Weidong,Mehmood Sajid

Abstract

AbstractIn light of the rapid expansion of the marine aquaculture industry, there has been widespread and irregular usage of aquatic drugs to combat biological diseases, which significantly impact the neighboring aquatic ecosystems. This study delves into the impact of the antibiotic aquatic drug known as doxycycline hydrochloride (DOX) on offshore soft corals, providing valuable data for the responsible use and management of aquatic drugs. In this investigation, we subjected Sarcophyton trocheliophorum to acute exposure to varying concentrations of DOX (0, 1, 5, and 10 mg L−1). We meticulously assessed critical parameters and observed alterations in protein levels, superoxide dismutase (SOD) activity, catalase (CAT) activity, lipid peroxidation (LPO), malondialdehyde (MDA) levels, Acid phosphatase (ACP) activity, alkaline phosphatase (AKP) activity, glutathione (GSH) concentration, glutathione S-transferase (GST) activity, glutathione Peroxidase (GSH-Px) activity, zooxanthellae density, and chlorophyll content. Our findings reveal that in the presence of DOX-induced environmental stress, there is a significant increase in LPO, MDA, chlorophyll, carotenoid levels, and the activities of ACP, GST, and GSH-Px in soft corals. Simultaneously, there is a noteworthy decrease in zooxanthellae density. Additionally, the protein concentration and SOD activity in soft corals experience substantial reduction when exposed to 5 mg L−1 DOX. Notably, CAT activity varies significantly in environments with 1 and 10 mg L−1 DOX. Moreover, these conditions exhibit a discernible influence on AKP activity, GSH content, and chlorophyll levels. These findings suggest that DOX exposure carries the potential for toxicity in aquaculture settings, affecting protein synthesis in soft corals and influencing oxidative stress, lipid peroxidation, immunity, and detoxification processes within these organisms. There is also a risk of compromising the coral defense system, potentially leading to coral bleaching. Furthermore, this study underscores the significant impact on photosynthesis, growth, and the metabolic dynamics of the coral-zooxanthellae symbiotic system. Consequently, our research offers vital insights into the mortality and bleaching effects of aquatic drugs on marine corals, offering a foundation for the prudent use and management of such substances.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3