CRISPR-resolved virus-host interactions in a municipal landfill include non-specific viruses, hyper-targeted viral populations, and interviral conflicts

Author:

George Nikhil A.,Hug Laura A.

Abstract

AbstractViruses are the most abundant microbial guild on the planet, impacting microbial community structure and ecosystem services. Viruses are specifically understudied in engineered environments, including examinations of their host interactions. We examined host-virus interactions via host CRISPR spacer to viral protospacer mapping in a municipal landfill across two years. Viruses comprised ~ 4% of both the unassembled reads and assembled basepairs. A total of 458 unique virus-host connections captured hyper-targeted viral populations and host CRISPR array adaptation over time. Four viruses were predicted to infect across multiple phyla, suggesting that some viruses are far less host-specific than is currently understood. We detected 161 viral elements that encode CRISPR arrays, including one with 187 spacers, the longest virally-encoded CRISPR array described to date. Virally-encoded CRISPR arrays targeted other viral elements in interviral conflicts. CRISPR-encoding proviruses integrated into host chromosomes were latent examples of CRISPR-immunity-based superinfection exclusion. The bulk of the observed virus-host interactions fit the one-virus-one-host paradigm, but with limited geographic specificity. Our networks highlight rare and previously undescribed complex interactions influencing the ecology of this dynamic engineered system. Our observations indicate landfills, as heterogeneous contaminated sites with unique selective pressures, are key locations for atypical virus-host dynamics.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Joint Genome Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3