Investigation of an efficient multi-modal convolutional neural network for multiple sclerosis lesion detection

Author:

Raab Florian,Malloni Wilhelm,Wein Simon,Greenlee Mark W.,Lang Elmar W.

Abstract

AbstractIn this study, an automated 2D machine learning approach for fast and precise segmentation of MS lesions from multi-modal magnetic resonance images (mmMRI) is presented. The method is based on an U-Net like convolutional neural network (CNN) for automated 2D slice-based-segmentation of brain MRI volumes. The individual modalities are encoded in separate downsampling branches without weight sharing, to leverage the specific features. Skip connections input feature maps to multi-scale feature fusion (MSFF) blocks at every decoder stage of the network. Those are followed by multi-scale feature upsampling (MSFU) blocks which use the information about lesion shape and location. The CNN is evaluated on two publicly available datasets: The ISBI 2015 longitudinal MS lesion segmentation challenge dataset containing 19 subjects and the MICCAI 2016 MSSEG challenge dataset containing 15 subjects from various scanners. The proposed multi-input 2D architecture is among the top performing approaches in the ISBI challenge, to which open-access papers are available, is able to outperform state-of-the-art 3D approaches without additional post-processing, can be adapted to other scanners quickly, is robust against scanner variability and can be deployed for inference even on a standard laptop without a dedicated GPU.

Funder

Universität Regensburg

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference48 articles.

1. Rolak, L. A. Multiple sclerosis: It’s not the disease you thought it was. Clin. Med. Res. 1, 57–60. https://doi.org/10.3121/cmr.1.1.57 (2003).

2. Sweeney, E. M. et al. Oasis is automated statistical inference for segmentation, with applications to multiple sclerosis lesion segmentation in MRI. Neuroimage Clin. 2, 402–413. https://doi.org/10.1016/j.nicl.2013.03.002 (2013).

3. Penny, W., Friston, K., Ashburner, J., Kiebel, S. & Nichols, T. The Analysis of Functional Brain Images, Statistical Parametric Mapping (Elsevier, 2007).

4. Long, M., Zhu, H., Wang, J. & Jordan, M. I. Deep transfer learning with joint adaptation networks. In Int Conf Machine Learning, 2208–2217 (PMLR 70, Sydney, Australia, 2017).

5. Goodfellow, I. J. et al. Generative adversarial nets (2014).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3