Author:
An Soo-Chan,Lim Yeonsoo,Jun Young Chul
Abstract
AbstractThree-dimensional (3D) printing allows the fabrication of complex shapes with high resolutions. However, the printed structures typically have fixed shapes and functions. Four-dimensional printing allows the shapes of 3D-printed structures to be transformed in response to external stimuli. Among the external stimuli, light has unique advantages for remote thermal actuation. However, light absorption in opaque structures occurs only near the sample surface; thus, actuation can be slow. Here, we propose and experimentally demonstrate the rapid and selective actuation of 3D-printed shape-memory polymer (SMP) composites using microwave heating. The SMP composite filaments are prepared using different amounts of graphite flakes. Microwave radiation can penetrate the entire printed structures and induce rapid heating. With sufficient graphite contents, the printed SMP composites are heated above their glass transition temperature within a few seconds. This leads to rapid thermal actuation of the 3D-printed SMP structures. Finally, dual-material 3D printing is demonstrated to induce selective microwave heating and control actuation motion. Our experiments and simulations indicate that microwave heating of SMP composites can be an effective method for the rapid and selective actuation of complex structures.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献