Author:
ter Wee M. A.,Dobbe J. G. G.,Buijs G. S.,Kievit A. J.,Schafroth M. U.,Maas M.,Blankevoort L.,Streekstra G. J.
Abstract
AbstractCT imaging under external valgus and varus loading conditions and consecutive image analysis can be used to detect tibial implant loosening after total knee arthroplasty. However, the applied load causes the tibia to deform, which could result in an overestimation of implant displacement. This research evaluates the extent of tibia deformation and its effect on measuring implant displacement. Ten cadaver specimen with TKA were CT-scanned under valgus/varus loading (20 Nm), first implanted without bone cement fixation (mimicking a loose implant) and subsequently with bone cement fixation (mimicking a fixed implant). By means of image analysis, three relative displacements were assessed: (1) between the proximal and distal tibia (measure of deformation), (2) between the implant and the whole tibia (including potential deformation effect) and (3) between the implant and the proximal tibia (reduced deformation effect). Relative displacements were quantified in terms of translations along, and rotations about the axes of a local coordinate system. As a measure of deformation, the proximal tibia moved relative to the distal tibia by, on average 1.27 mm (± 0.50 mm) and 0.64° (± 0.25°). Deformation caused an overestimation of implant displacement in the cemented implant. The implant displaced with respect to the whole tibia by 0.45 mm (± 0.22 mm) and 0.79° (± 0.38°). Relative to the proximal tibia, the implant moved by 0.23 mm (± 0.10 mm) and 0.62° (± 0.34°). The differentiation between loose and fixed implants improved when tibia deformation was compensated for by using the proximal tibia rather than the whole tibia.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献