Host-response transcriptional biomarkers accurately discriminate bacterial and viral infections of global relevance

Author:

Ko Emily R.,Reller Megan E.,Tillekeratne L. Gayani,Bodinayake Champica K.,Miller Cameron,Burke Thomas W.,Henao Ricardo,McClain Micah T.,Suchindran Sunil,Nicholson Bradly,Blatt Adam,Petzold Elizabeth,Tsalik Ephraim L.,Nagahawatte Ajith,Devasiri Vasantha,Rubach Matthew P.,Maro Venance P.,Lwezaula Bingileki F.,Kodikara-Arachichi Wasantha,Kurukulasooriya Ruvini,De Silva Aruna D.,Clark Danielle V.,Schully Kevin L.,Madut Deng,Dumler J. Stephen,Kato Cecilia,Galloway Renee,Crump John A.,Ginsburg Geoffrey S.,Minogue Timothy D.,Woods Christopher W.

Abstract

AbstractDiagnostic limitations challenge management of clinically indistinguishable acute infectious illness globally. Gene expression classification models show great promise distinguishing causes of fever. We generated transcriptional data for a 294-participant (USA, Sri Lanka) discovery cohort with adjudicated viral or bacterial infections of diverse etiology or non-infectious disease mimics. We then derived and cross-validated gene expression classifiers including: 1) a single model to distinguish bacterial vs. viral (Global Fever-Bacterial/Viral [GF-B/V]) and 2) a two-model system to discriminate bacterial and viral in the context of noninfection (Global Fever-Bacterial/Viral/Non-infectious [GF-B/V/N]). We then translated to a multiplex RT-PCR assay and independent validation involved 101 participants (USA, Sri Lanka, Australia, Cambodia, Tanzania). The GF-B/V model discriminated bacterial from viral infection in the discovery cohort an area under the receiver operator curve (AUROC) of 0.93. Validation in an independent cohort demonstrated the GF-B/V model had an AUROC of 0.84 (95% CI 0.76–0.90) with overall accuracy of 81.6% (95% CI 72.7–88.5). Performance did not vary with age, demographics, or site. Host transcriptional response diagnostics distinguish bacterial and viral illness across global sites with diverse endemic pathogens.

Funder

US Army Medical Research and Materiel Command

US NIH NIAID

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3